ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1547]      



Задача 57997

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Построение треугольников по различным элементам ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 9,10

Постройте треугольник ABC по сторонам AB и AC и биссектрисе AD.
Прислать комментарий     Решение


Задача 77881

Темы:   [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78490

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
Сложность: 4-
Классы: 7,8

Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку.
Прислать комментарий     Решение


Задача 86121

Темы:   [ Свойства симметрий и осей симметрии ]
[ Процессы и операции ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли:
а) допустимый четырехугольник, который после n<5 операций становится равным исходному;
б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?
Прислать комментарий     Решение


Задача 108150

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC точка O – середина гипотенузы AC . На отрезке AB взята точка M , а на отрезке BC – точка N , причём угол MON – прямой. Докажите, что AM2+CN2 = MN2 .
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .