Страница:
<< 100 101 102 103
104 105 106 >> [Всего задач: 1026]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан равносторонний треугольник со стороной $d$ и точка $P$, расстояния от которой до вершин треугольника равны положительным числам $a$, $b$ и $с$. Докажите, что найдётся равносторонний треугольник со стороной $a$ и точка $Q$, расстояния от которой до вершин этого треугольника равны $b$, $с$ и $d$.
|
|
Сложность: 4 Классы: 9,10,11
|
Остроугольный треугольник $ABC$ вписан в окружность $\Omega$. Пусть $H$ и $M$ – точка пересечения высот и середина стороны $BC$ соответственно. Прямая $HM$ пересекает окружность $\omega$, описанную около треугольника $BHC$, в точке $N\not=H$. На дуге $BC$ окружности $\omega$, не содержащей точку $H$, нашлась точка $P$ такая, что $\angle HMP=90^{\circ}$. Отрезок $PM$ пересекает $\Omega$ в точке $Q$. Точки $B'$ и $C'$ симметричны точке $A$ относительно точек $B$ и $C$ соответственно. Докажите, что описанные окружности треугольников $AB'C'$ и $PQN$ касаются.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Найти геометрическое место середин отрезков с концами на двух различных
непересекающихся окружностях, лежащих одна вне другой.
|
|
Сложность: 4 Классы: 10,11
|
Расстояние от фиксированной точки
P плоскости до двух вершин
A,
B
равностороннего треугольника
ABC равны
AP = 2;
BP = 3. Определить, какое
максимальное значение может иметь отрезок
PC.
Страница:
<< 100 101 102 103
104 105 106 >> [Всего задач: 1026]