Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 1026]
Дан выпуклый четырёхугольник
ABMC , в котором
AB=BC ,
BAM = 30
o ,
ACM=
150
o . Докажите, что
AM – биссектриса
угла
BMC .
Пусть BM – медиана остроугольного треугольника ABC.
Касательная в точке A к описанной окружности треугольника ABM, и касательная в точке C к описанной окружности треугольника BCM, пересекаются в точке D. Докажите, что точка K, симметричная точке D относительно прямой AC лежит на прямой BM.
Пусть
S1
и
S2
– две окружности, лежащие
одна вне другой. Общая внешняя касательная касается
их в точках
A и
B . Окружность
S3
проходит
через точки
A и
B и вторично пересекает окружности
S1
и
S2
в точках
C и
D соответственно;
K – точка пересечения прямых, касающихся окружностей
S1
и
S2
соответственно в точках
C и
D .
Докажите, что
KC=KD .
|
|
Сложность: 4 Классы: 9,10,11
|
Треугольники ABC и A1B1C1 подобны и по-разному ориентированы. На отрезке AA1 взята такая точка A', что AA' : A1A' = BC : B1C1. Аналогично строим B' и C'. Докажите, что A', B' и C' лежат на одной прямой.
Через центр
O окружности
Σ , описанной около
треугольника
ABC , проведена прямая, параллельная
BC
и пересекающая стороны
AB и
AC в точках
B1
и
C1
соответственно. Окружность
σ проходит
через точки
B1
и
C1
и касается
Σ в точке
K . Найдите угол между прямыми
AK и
BC . Найдите
площадь треугольника
ABC и радиус окружности
Σ ,
если
B1
C1
=6
,
AK=6
, а расстояние между прямыми
BC и
B1
C1
равно 2.
Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 1026]