ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 60366

Темы:   [ Принцип Дирихле (прочее) ]
[ Десятичные дроби (прочее) ]
[ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9

Докажите, что из 11 различных бесконечных десятичных дробей можно выбрать две такие, которые совпадают в бесконечном числе разрядов.

Прислать комментарий     Решение

Задача 78073

Темы:   [ Приближения чисел ]
[ Десятичные дроби (прочее) ]
Сложность: 4-
Классы: 11

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

Прислать комментарий     Решение

Задача 111849

Темы:   [ Логика и теория множеств ]
[ Оценка + пример ]
[ Десятичные дроби (прочее) ]
Сложность: 5
Классы: 9

Дима посчитал факториалы всех натуральных чисел от80 до 99, нашел числа, обратные к ним, и напечатал получившиеся десятичные дроби на 20 бесконечных ленточках (например, на последней ленточке было напечатано число =0, 10715.. ). Саша хочет вырезать из одной ленточки кусок, на котором записано N цифр подряд и нет запятой. При каком наибольшем N он сможет это сделать так, чтобы Дима не смог определить по этому куску, какую ленточку испортил Саша?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .