ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1. ![]() |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 590]
При каких натуральных n ≥ 2 неравенство
Что больше: 300! или 100300?
Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1.
Даны сто чисел x1, x2,..., x100, сумма которых равна 1. При этом абсолютные величины разностей xk+1 – xk меньше 1/50 каждая.
Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно.
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 590] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |