ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 367]      



Задача 66067

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7

Автор: Фольклор

На кружок пришли четыре мальчика из 7А и четыре – из 7Б: три Лёши, три Вани и два Артёма.
Могло ли оказаться так, что у каждого из них есть хотя бы один тёзка-одноклассник, пришедший на кружок?

Прислать комментарий     Решение

Задача 66281

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

В классе 28 учеников. На уроке программирования они делятся на три группы. На уроке английского языка они тоже делятся на три группы, но по-другому. И на уроке физкультуры они делятся на три группы каким-то третьим способом. Докажите, что найдутся хотя бы два ученика, которые на всех трёх занятиях находятся друг с другом в одной группе.

Прислать комментарий     Решение

Задача 66292

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В театральной труппе 60 актеров. Каждые два хотя бы раз играли в одном и том же спектакле. В каждом спектакле занято не более 30 актеров.
Какое наименьшее количество спектаклей мог поставить театр?

Прислать комментарий     Решение

Задача 67056

Темы:   [ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 9,10,11

В одной из клеток шахматной доски 10×10 стоит ладья. Переходя каждым ходом в соседнюю по стороне клетку, она обошла все клетки доски, побывав в каждой ровно по одному разу. Докажите, что для каждой главной диагонали доски верно следующее утверждение: в маршруте ладьи есть два последовательных хода, первым из которых она ушла с этой диагонали, а следующим – вернулась на неё. (Главная диагональ ведёт из угла доски в противоположный угол.)

Прислать комментарий     Решение

Задача 78206

Темы:   [ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .