ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



Задача 103820

Темы:   [ Трапеции (прочее) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2-
Классы: 7

Четырёхугольник с длинами сторон 1, 1, 1 и 2 имеет две параллельные стороны и разбит на четыре одинаковые фигуры (см. рисунок). В результате верхняя сторона разделилась на четыре отрезка. Найдите отношение длины большего отрезка к меньшему.

Прислать комментарий     Решение

Задача 54774

Темы:   [ Необычные построения (прочее) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2
Классы: 8,9

Имеется угольник с углом в 40°. Как с его помощью построить угол, равный:
 а) 80°;   б) 160°;   в) 20°?

Прислать комментарий     Решение

Задача 30307

Темы:   [ Четность и нечетность ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 6,7,8

На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.

Прислать комментарий     Решение

Задача 78475

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

Прислать комментарий     Решение

Задача 102704

Темы:   [ Метод координат на плоскости ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

Даны точки  A(–1, 5)  и  B(3, –7).  Найдите расстояние от начала координат до середины отрезка AB.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .