ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 88]      



Задача 65358

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 9,10,11

Если один человек тратит в очереди одну минуту на ожидание, будем говорить, что бесцельно затрачена одна человеко-минута. В очереди в банке стоит восемь человек, из них пятеро планируют простые операции, занимающие 1 минуту, а остальные планируют длительные операции, занимающие 5 минут. Найдите:
  а) наименьшее и наибольшее возможное суммарное количество бесцельно затраченных человеко-минут;
  б) математическое ожидание количества бесцельно затраченных человеко-минут, при условии, что клиенты встают в очередь в случайном порядке.

Прислать комментарий     Решение

Задача 78487

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 10,11

Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

Прислать комментарий     Решение

Задача 98399

Темы:   [ Кооперативные алгоритмы ]
[ Принцип Дирихле (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 8,9,10

a) Двое показывают карточный фокус. Первый снимает пять карт из колоды, содержащей 52 карты (предварительно перетасованной кем-то из зрителей), смотрит в них и после этого выкладывает их в ряд слева направо, причём одну из карт кладёт рубашкой вверх, а остальные – картинкой вверх. Второй участник фокуса отгадывает закрытую карту. Докажите, что они могут так договориться, что второй всегда будет угадывать карту.

б) Второй фокус отличается от первого тем, что первый участник выкладывает слева направо четыре карты картинкой вверх, а одну не выкладывает. Могут ли и в этом случае участники фокуса так договориться, чтобы второй всегда угадывал невыложенную карту?

Прислать комментарий     Решение

Задача 109718

Темы:   [ Взвешивания ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 4
Классы: 8,9,10

Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли, что
m(A) < m(B) < m(C)  (через m(x) обозначена масса гири x). При этом даётся ответ "Да" или "Нет". Можно ли за девять вопросов гарантированно узнать, в каком порядке идут веса гирь?

Прислать комментарий     Решение

Задача 98160

Темы:   [ Теория алгоритмов (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Разложение в произведение транспозиций и циклов ]
Сложность: 4+
Классы: 8,9,10

Автор: Анджанс А.

В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .