ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 [Всего задач: 88]      



Задача 107862

Темы:   [ Задачи с ограничениями ]
[ Вспомогательная раскраска (прочее) ]
[ Обратный ход ]
[ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
Сложность: 5+
Классы: 8,9,10

Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.

Прислать комментарий     Решение

Задача 30732

Темы:   [ Раскладки и разбиения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 8,9

Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
  а) считаются различными?
  б) считаются тождественными?

Прислать комментарий     Решение

Задача 65359

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Условная вероятность ]
[ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 9,10,11

Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
  а) Найдите вероятность того, что при очередной замене придётся поменять ровно 4 фонаря.
  б) Найдите математическое ожидание числа фонарей, которые придётся поменять при очередной замене.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .