ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

   Решение

Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 606]      



Задача 78513

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

Прислать комментарий     Решение

Задача 78663

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p и q – два простых числа, причём  q = p + 2,  то  pq + qp  делится на  p + q.

Прислать комментарий     Решение

Задача 116239

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Деление с остатком ]
Сложность: 3
Классы: 8,9

Есть 40 гирек массой 1 г, 2 г, ..., 40 г. Из них выбрали 10 гирь чётной массы и положили на левую чашу весов. Затем выбрали 10 гирь нечётной массы и положили на правую чашу весов. Весы оказались в равновесии. Докажите, что на какой-нибудь чаше есть две гири с разностью масс в 20 г.

Прислать комментарий     Решение

Задача 116281

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 10,11

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Прислать комментарий     Решение

Задача 116577

Темы:   [ Процессы и операции ]
[ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа A при помощи таких операций можно получить число A + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

Прислать комментарий     Решение

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .