ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В n стаканах достаточно большой вместительности налито поровну воды. Разрешается переливать из любого стакана в любой другой столько воды, сколько имеется в этом последнем. При каких n можно в конечное число шагов слить воду в один стакан? Решение |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 411]
В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей). а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным? б) Пусть стёрлись k записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем k всегда можно однозначно восстановить стёршиеся записи?
Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)
В одном государстве 100 городов и каждый соединён с каждым дорогой с односторонним движением. Докажите, что можно поменять направление движения не более чем на одной дороге так, чтобы от каждого города можно было доехать до любого другого.
Сумма положительных чисел x1, x2, ..., xn равна ½. Докажите, что
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 411] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|