ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан многоугольник на плоскости, невыпуклый и несамопересекающийся. Д – множество точек, принадлежащих тем диагоналям многоугольника, которые не вылезают за его пределы (то есть лежат либо целиком внутри, либо частью внутри, частью на контуре). Концы этих диагоналей тоже включаются в Д. Докажите, что любые две точки из Д можно соединить ломаной, целиком принадлежащей Д.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 204]      



Задача 78583

Темы:   [ Невыпуклые многоугольники ]
[ Связность. Связные множества ]
[ Наименьший или наибольший угол ]
[ Индукция в геометрии ]
Сложность: 5+
Классы: 8,9,10,11

Дан многоугольник на плоскости, невыпуклый и несамопересекающийся. Д – множество точек, принадлежащих тем диагоналям многоугольника, которые не вылезают за его пределы (то есть лежат либо целиком внутри, либо частью внутри, частью на контуре). Концы этих диагоналей тоже включаются в Д. Докажите, что любые две точки из Д можно соединить ломаной, целиком принадлежащей Д.
Прислать комментарий     Решение


Задача 58119

Тема:   [ Выпуклые многоугольники ]
Сложность: 6
Классы: 8,9

Докажите, что в любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник.
Прислать комментарий     Решение


Задача 58120

Тема:   [ Выпуклые многоугольники ]
Сложность: 6
Классы: 8,9

Дан выпуклый n-угольник, никакие две стороны которого не параллельны. Докажите, что различных треугольников, о которых идет речь в задаче 22.8, не менее n - 2.
Прислать комментарий     Решение


Задача 58121

Тема:   [ Выпуклые многоугольники ]
Сложность: 6
Классы: 8,9

Точка O лежит внутри выпуклого n-угольника A1...An. Докажите, что среди углов AiOAj не менее n - 1 не острых.
Прислать комментарий     Решение


Задача 58122

Тема:   [ Выпуклые многоугольники ]
Сложность: 6
Классы: 8,9

В окружность вписан выпуклый n-угольник A1...An, причем среди его вершин нет диаметрально противоположных точек. Докажите, что если среди треугольников ApAqAr есть хотя бы один остроугольный, то таких остроугольных треугольников не менее n - 2.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .