ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано: $$ a_1=1,a_k=\left[\sqrt{a_1+a_2+\dots +a_{k-1}}\right].$$

Найти $a_{1000}$.

Примечание. $\left[A\right]$ — целая часть $A$.

   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 411]      



Задача 78594

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Иррациональные неравенства ]
Сложность: 5-
Классы: 8,9,10

Дано: $$ a_1=1,a_k=\left[\sqrt{a_1+a_2+\dots +a_{k-1}}\right].$$

Найти $a_{1000}$.

Примечание. $\left[A\right]$ — целая часть $A$.
Прислать комментарий     Решение


Задача 78597

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Иррациональные неравенства ]
Сложность: 5-
Классы: 9,10,11

Дано:

a1 = 1966, ak = $\displaystyle \left[\vphantom{\sqrt{a_1+a_2+\dots +a_{k-1}}}\right.$$\displaystyle \sqrt{a_1+a_2+\dots +a_{k-1}}$$\displaystyle \left.\vphantom{\sqrt{a_1+a_2+\dots +a_{k-1}}}\right]$.

Найти a1966.
Прислать комментарий     Решение

Задача 105068

Темы:   [ Гомотетия помогает решить задачу ]
[ Индукция в геометрии ]
[ Целочисленные решетки (прочее) ]
Сложность: 5-
Классы: 9,10,11

На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.
Сможет ли кузнечик попасть в лунку?
Прислать комментарий     Решение


Задача 111872

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 8,9,10

Последовательности (an) и (bn) заданы условиями a1=1 , b1=2 , an+1= и bn+1= . Докажите, что a2008<5 .
Прислать комментарий     Решение


Задача 107998

Темы:   [ Деление с остатком ]
[ Индукция (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 9,10,11

В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
  а) не более 460 камней;
  б) не более 461 камня?
Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .