ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В бесконечно большой каравай, занимающий все пространство, в точках с целыми координатами впечены изюминки диаметра 0,1. Каравай разрезали на части несколькими плоскостями. Доказать, что найдется неразрезанная изюминка.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 35369

Темы:   [ Свойства симметрий и осей симметрии ]
[ Инварианты ]
[ Свойства частей, полученных при разрезаниях ]
[ Многоугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9,10,11

С многоугольником разрешено проделывать следующую операцию. Если многоугольник делится отрезком AB на на два многоугольника, то один из этих многоугольников можно отразить симметрично относительно серединного перпендикуляра к отрезку AB. (Операция разрешается только в том случае, когда в результате получается несамопересекающийся многоугольник.) Можно ли путем нескольких таким операций получить из квадрата правильный треугольник?
Прислать комментарий     Решение


Задача 78612

Темы:   [ Целочисленные решетки (прочее) ]
[ Объем помогает решить задачу ]
[ Свойства частей, полученных при разрезаниях ]
[ Объем круглых тел ]
[ Неравенства с объемами ]
Сложность: 6
Классы: 10,11

В бесконечно большой каравай, занимающий все пространство, в точках с целыми координатами впечены изюминки диаметра 0,1. Каравай разрезали на части несколькими плоскостями. Доказать, что найдется неразрезанная изюминка.
Прислать комментарий     Решение


Задача 56804

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Длины сторон (неравенства) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Вписанные и описанные многоугольники ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 5
Классы: 9,10

Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .