ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что оси симметрии правильного многоугольника пересекаются в одной точке. б) Докажите, что правильный 2n-угольник имеет центр симметрии. ![]() ![]() Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2. ![]() ![]() ![]() На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие? ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?
Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?
На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?
Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля? ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)
Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному
разу, вернувшись последним ходом в исходную клетку.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |