ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  ...,  xn = [1,5xn–1].
Доказать, что последовательность  yn = (–1)xn  непериодическая.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



Задача 98247

Темы:   [ Десятичная система счисления ]
[ Логарифмические неравенства ]
[ Целая и дробная части. Принцип Архимеда ]
[ Приближения чисел ]
Сложность: 4+
Классы: 10,11

Рассматривается последовательность, n-й член которой есть первая цифра числа 2n.
Докажите, что количество различных "слов" длины 13 – наборов из 13 подряд идущих цифр – равно 57.

Прислать комментарий     Решение

Задача 79347

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Четность и нечетность ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 11

Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  ...,  xn = [1,5xn–1].
Доказать, что последовательность  yn = (–1)xn  непериодическая.
Прислать комментарий     Решение


Задача 60554

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Геометрическая прогрессия ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4-
Классы: 8,9,10

Докажите, что число p входит в разложение n! с показателем, не превосходящим  

Прислать комментарий     Решение

Задача 60558

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Треугольник Паскаля и бином Ньютона ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 8,9,10

Докажите, что число    (m, n ≥ 0)  целое.

Прислать комментарий     Решение

Задача 105071

Темы:   [ Десятичная система счисления ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (углы и длины) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Логарифмические неравенства ]
Сложность: 5-
Классы: 10,11

Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .