ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат разрезан на прямоугольники.
Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 78835

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 9,10

На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.
Прислать комментарий     Решение


Задача 58239

Тема:   [ Свойства частей, полученных при разрезаниях ]
Сложность: 5+
Классы: 8,9

В квадрате со стороной 1 проведено конечное число отрезков, параллельных его сторонам, причем эти отрезки могут пересекать друг друга. Сумма длин отрезков равна 18. Докажите, что площадь одной из частей, на которые разбит квадрат, не меньше 0,01.
Прислать комментарий     Решение


Задача 58240

Тема:   [ Свойства частей, полученных при разрезаниях ]
Сложность: 5+
Классы: 8,9

Треугольник, все углы которого не превосходят 120o, разрезан на несколько треугольников. Докажите, что хотя бы у одного из полученных треугольников все углы не превосходят 120o.
Прислать комментарий     Решение


Задача 79308

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Полуинварианты ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Невыпуклые многоугольники ]
Сложность: 5+
Классы: 9,10,11

Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырёхугольников?
Прислать комментарий     Решение


Задача 79363

Темы:   [ Неравенства с площадями ]
[ Свойства частей, полученных при разрезаниях ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8

Квадрат разрезан на прямоугольники.
Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .