ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждый участник шахматных соревнований выиграл белыми столько же партий, сколько все остальные вместе взятые – чёрными. ![]() |
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1111]
Каждый участник шахматных соревнований выиграл белыми столько же партий, сколько все остальные вместе взятые – чёрными.
В турнире участвовали пять шахматистов. Известно, что каждый сыграл с остальными по одной партии и все набрали разное количество очков; занявший первое место не сделал ни одной ничьей; занявший второе место не проиграл ни одной партии; занявший четвёртое место не выиграл ни одной партии. Определите результаты всех партий турнира.
Как-то в минуту отдыха друзья-мушкетёры – Атос, Портос, Арамис и д'Артаньян – решили померяться силой при перетягивании каната. Портос с д'Артаньяном легко перетянули Атоса с Арамисом. Но когда Портос стал в паре с Атосом, то победа против Арамиса с д'Артаньяном досталась им уже не так легко. Когда же Портос с Арамисом оказались против Атоса с д'Артаньяном, то ни одна из этих пар не смогла одолеть друг друга. Можете ли вы определить, как мушкетёры распределяются по силе?
На клетке b8 шахматной доски написано число –1, а на всех остальных клетках число 1. Разрешается одновременно менять знак во всех клетках одной вертикали или одной горизонтали. Докажите, что сколько бы раз мы это ни проделывали, невозможно добиться, чтобы все числа в таблице стали положительными.
20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1111] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |