ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1P2S2 + P3S3 + P4S4.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 [Всего задач: 182]      



Задача 73780

Темы:   [ Системы точек ]
[ Свойства симметрий и осей симметрии ]
[ Симметрия относительно плоскости ]
[ Правильный тетраэдр ]
[ Индукция в геометрии ]
Сложность: 7
Классы: 10,11

Предлагается построить N точек на плоскости так, чтобы все расстояния между ними равнялись заранее заданным числам: для любых двух точек Mi и Mj, где i и j любые числа от 1 до N.

Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно?

б) Достаточно ли требовать, чтобы можно было построить всякие 4 из N точек?

в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда наименьшее k, для которого возможность построения любых k из данных N точек обеспечивает возможность построения и всех N> точек?
Прислать комментарий     Решение


Задача 79626

Темы:   [ Неравенства с площадями ]
[ Векторы помогают решить задачу ]
[ Площадь и ортогональная проекция ]
[ Скалярное произведение ]
[ Тетраэдр (прочее) ]
[ Правильный тетраэдр ]
Сложность: 5
Классы: 10,11

Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1P2S2 + P3S3 + P4S4.
Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .