ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольной пирамиде SABC известны плоские углы при вершине S : BSC = 90o , ASC = ASB = 60o . Вершины A , S и середины рёбер SB , SC , AB , AC лежат на поверхности шара радиуса 3. Докажите, что ребро SA является диаметром этого шара, и найдите объём пирамиды.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 67010

Темы:   [ Сферы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус.
Прислать комментарий     Решение


Задача 87077

Темы:   [ Сферы (прочее) ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде SABC известны плоские углы при вершине S : BSC = 90o , ASC = ASB = 60o . Вершины A , S и середины рёбер SB , SC , AB , AC лежат на поверхности шара радиуса 3. Докажите, что ребро SA является диаметром этого шара, и найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87337

Темы:   [ Сферы (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

На сфере радиуса 11 расположены точки A , A1 , B , B1 , C и C1 . Прямые AA1 , BB1 и CC1 попарно перпендикулярны и пересекаются в точке M , отстоящей от центра сферы на расстояние . Найдите AA1 , если известно, что BB1=18 , а точка M делит отрезок CC1 в отношении (8 + ):(8 - ) .
Прислать комментарий     Решение


Задача 87338

Темы:   [ Сферы (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

Отрезки AA1 , BB1 и CC1 , концы которых лежат на сфере радиуса 10, попарно перпендикулярны и пересекаются в точке M . Известно, что AA1=12 , BB1 =18 и CM:MC1=11:3 . Найдите расстояние от центра сферы до точки M,
Прислать комментарий     Решение


Задача 87339

Темы:   [ Сферы (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

Через точку K , расположенную внутри сферы, проведены три попарно перпендикулярные прямые. Первая прямая пересекает сферу в точках A и A1 , вторая – в точках B и B1 , третья – в точках C и C1 , причём AA1=22 , CC1=20 , а точка K делит отрезок BB1 в отношении (9 + ) : (9 -) . Найдите радиус сферы, если известно, что точка K отстоит от центра сферы на расстоянии .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .