ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутренняя точка A шара радиуса r соединена с поверхностью шара тремя отрезками прямых, имеющими длину l и проведёнными под углом α друг к другу. Найдите расстояние точки A от центра шара.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 87267

Темы:   [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 8,9

Найдите объём прямоугольного параллелепипеда, если его диагональ равна d , а ребра, исходящие из одной вершины относятся как m:n:p .
Прислать комментарий     Решение


Задача 87328

Темы:   [ Сферы (прочее) ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Внутренняя точка A шара радиуса r соединена с поверхностью шара тремя отрезками прямых, имеющими длину l и проведёнными под углом α друг к другу. Найдите расстояние точки A от центра шара.
Прислать комментарий     Решение


Задача 109233

Темы:   [ Прямая призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109294

Темы:   [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Пусть K , L и M – середины рёбер соответственно AD , A1B1 и CC1 прямоугольного параллелепипеда ABCDA1B1C1D1 , в котором AB = a , AA1 = b , AD = c . Найдите отношение суммы квадратов сторон треугольника KLM к квадрату диагонали параллелепипеда.
Прислать комментарий     Решение


Задача 111121

Темы:   [ Куб ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Найдите расстояние от центра грани единичного куба до вершин противоположной грани.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .