ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Боковое ребро пирмиды разделено на 100 равных частей и через точки деления проведены плоскости, параллельные основанию. Найдите отношение площадей наибольшего и наименьшего из получившихся сечений. ![]() ![]() Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA. ![]() ![]() ![]() Многогранник ABCDE составлен из треугольных пирамид ABCD и BCDE , причём прямая DE параллельна плоскости ABC . В пирамиду BCDE вписан шар, k1 – отношение расстояния от его центра до прямой DE к расстоянию от прямой DE до плоскости ABC . В пирамиду ABCD вписан шар, k2 – отношение расстояния от его центра до прямой AB к расстоянию от прямой DE до плоскости ABC . Двугранный угол пирамиды BCDE с ребром DE равен α , а двугранный угол пирамиды ABCD с ребром AD равен β . Известно, что sin ![]() ![]() ![]() В треугольной пирамиде боковые грани DBC и DCA взаимно перпендикулярны и представляют собой равные равнобедренные треугольники с основанием CD = 2 и боковой стороной, равной ![]() ![]() ![]() На боковом ребре AB пирамиды взяты точки K и M , причём AK = BM . Через эти точки проведены сечения, параллельные основанию пирамиды. Известно, что сумма площадей этих сечений составляет ![]() ![]() ![]() Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB=4 , AD = AA1 = 14 . Точка M – середина ребра CC1 . Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A1 , D и M . ![]() ![]() ![]() На гранях двугранного угла с ребром AD лежат точки B и C . Отрезок DE параллелен плоскости треугольника ABC . В пирамиду BCDE вписан шар. Отношение расстояния от его центра до прямой DE к расстоянию от прямой DE до плоскости ABC равно k . Пусть точка B' – проекция точки B на плоскость CDE . Известно, что tg ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 105]
Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 105] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |