ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

Вниз   Решение


Найдите расстояние между серединами двух скрещивающихся рёбер куба, полная поверхность которого равна 36.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 204]      



Задача 87354

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра AD . Найдите расстояние от середины ребра AB до плоскости P , если ребро куба равно 3.
Прислать комментарий     Решение


Задача 87355

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через противоположные вершины A1 , C и середину ребра D1C1 . Найдите расстояние от вершины D1 до плоскости P , если ребро куба равно 6.
Прислать комментарий     Решение


Задача 87356

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через точку D и середины рёбер A1D1 и C1D1 . Найдите расстояние от середины ребра AA1 до плоскости P , если ребро куба равно 2.
Прислать комментарий     Решение


Задача 87408

Темы:   [ Куб ]
[ Боковая поверхность призмы ]
Сложность: 3
Классы: 10,11

Найдите расстояние между серединами двух скрещивающихся рёбер куба, полная поверхность которого равна 36.
Прислать комментарий     Решение


Задача 87470

Темы:   [ Куб ]
[ Свойства сечений ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – середина ребра D1C1 . Найдите периметр треугольника A1DM , а также расстояние от вершины D1 до плоскости, проходящей через вершины этого треугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .