ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)

Вниз   Решение


Дана треугольная пирамида ABCD. В ней R – радиус описанной сферы, r – радиус вписанной сферы, a – длина наибольшего ребра, h – длина наименьшей высоты (на какую-то грань). Докажите, что  R/r > a/h.

ВверхВниз   Решение


Докажите, что на окружности с центром в точке    лежит не более одной точки целочисленной решетки.

ВверхВниз   Решение



В правильную четырехугольную пирамиду вписан конус. Найдите отношение площади полной поверхности конуса к площади его боковой поверхности, если сторона основания пирамиды равна 4, а угол между высотой пирамиды и плоскостью боковой грани равен 30o.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 77]      



Задача 87631

Темы:   [ Тетраэдр (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2
Классы: 10,11

Найдите сумму всех плоских углов треугольной пирамиды.

Прислать комментарий     Решение

Задача 77977

Темы:   [ Тетраэдр (прочее) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 2+
Классы: 11

Дан прямой круговой конус и точка O. Найти геометрическое место вершин конусов, равных данному, с осями, параллельными оси данного конуса, и содержащих внутри данную точку O.
Прислать комментарий     Решение


Задача 87462

Темы:   [ Тетраэдр (прочее) ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11


В правильную четырехугольную пирамиду вписан конус. Найдите отношение площади полной поверхности конуса к площади его боковой поверхности, если сторона основания пирамиды равна 4, а угол между высотой пирамиды и плоскостью боковой грани равен 30o.

Прислать комментарий     Решение


Задача 35145

Темы:   [ Тетраэдр (прочее) ]
[ Объем тетраэдра и пирамиды ]
[ Проектирование помогает решить задачу ]
Сложность: 3
Классы: 10,11

Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6?

Прислать комментарий     Решение

Задача 35793

Темы:   [ Тетраэдр (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 8,9,10

Дан тетраэдр, у которого периметры всех граней равны между собой. Докажите, что сами грани равны между собой.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .