ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основание пирамиды PABCD – параллелограмм ABCD . Точка M расположена на ребре PC , причём PM:MC = 1:2 . Постройте сечение пирамиды плоскостью, проходящей через точку M параллельно прямым AP и BD . В каком отношении эта плоскость делит объём пирамиды?

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 378]      



Задача 87496

Темы:   [ Отношение объемов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . Точка M расположена на ребре PC , причём PM:MC = 1:2 . Постройте сечение пирамиды плоскостью, проходящей через точку M параллельно прямым AP и BD . В каком отношении эта плоскость делит объём пирамиды?
Прислать комментарий     Решение


Задача 87497

Темы:   [ Отношение объемов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . Точки M и K расположены на рёбрах AB и CP соответственно, причём AM:MB = 1:3 и PK:KC = 2:3 . Постройте сечение пирамиды плоскостью, проходящей через точки M и K параллельно прямой BD . В каком отношении эта плоскость делит объём пирамиды?
Прислать комментарий     Решение


Задача 109257

Темы:   [ Объем помогает решить задачу ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде ABCD грани ABC и ABD имеют площади p и q и образуют между собой угол α . Найдите площадь сечения пирамиды плоскостью, проходящей через ребро AB и центр вписанного в пирамиду шара.
Прислать комментарий     Решение


Задача 110323

Темы:   [ Объем призмы ]
[ Боковая поверхность призмы ]
Сложность: 4
Классы: 10,11

Докажите, что плоскость, пересекающая боковую поверхность правильной 2n -угольной призмы, но не пересекающая её оснований, делит ось призмы, её боковую поверхность и объём в одном и том же отношении.
Прислать комментарий     Решение


Задача 110414

Темы:   [ Объем тетраэдра и пирамиды ]
[ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

В основании пирамиды SABCD лежит прямоугольник ABCD , в котором AB=a , AD=b ; SC – высота пирамиды, CS=h . Найдите двугранный угол между плоскостями ABS и ADS .
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .