ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Вершины A и B призмы ABCA1B1C1 лежат на оси цилиндра, а остальные вершины – на боковой поверхности цилиндра. Найдите в этой призме двугранный угол с ребром AB .

Вниз   Решение


Известно, что ортогональные проекции некоторого тела на две непараллельные плоскости являются кругами. Докажите, что эти круги равны.

ВверхВниз   Решение


Найдите сторону правильного треугольника, являющегося ортогональной проекцией треугольника со сторонами , 3 и на некоторую плоскость.

ВверхВниз   Решение


В плоскости одной из граней двугранного угла взята фигура F . Площадь ортогональной проекции этой фигуры на другую грань равна S , а площадь её ортогональной проекции на биссекторную плоскость равна Q . Найдите площадь фигуры F .

ВверхВниз   Решение


Площадь ортогональной проекции круга радиуса, равного 1, на плоскость α равна 1. Найдите длину ортогональной проекции этого круга на прямую, перпендикулярную плоскости α .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 128]      



Задача 87604

Тема:   [ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 10,11

Площадь ортогональной проекции круга радиуса, равного 1, на плоскость α равна 1. Найдите длину ортогональной проекции этого круга на прямую, перпендикулярную плоскости α .
Прислать комментарий     Решение


Задача 87607

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

В плоскости одной из граней двугранного угла взята фигура F . Площадь ортогональной проекции этой фигуры на другую грань равна S , а площадь её ортогональной проекции на биссекторную плоскость равна Q . Найдите площадь фигуры F .
Прислать комментарий     Решение


Задача 87608

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Плоские углы при вершине D пирамиды ABCD равны 90o . Обозначим через S1 , S2 , S3 и Q площади граней ABD , BCD , CAD и ABC соответственно, через α , β и γ – двугранные углы при рёбрах соответственно AB , BC и AC . 1. Выразите α , β и γ через S1 , S2 , S3 и Q . 2. Докажите, что S21 + S22 + S23 = Q2 . 3. Докажите, что cos 2α + cos 2β + cos 2γ = 1 .
Прислать комментарий     Решение


Задача 87609

Темы:   [ Площадь и ортогональная проекция ]
[ Параллельное проектирование (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 10,11

Найдите сторону правильного треугольника, являющегося ортогональной проекцией треугольника со сторонами , 3 и на некоторую плоскость.
Прислать комментарий     Решение


Задача 87610

Темы:   [ Ортогональная проекция (прочее) ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

Все рёбра пирамиды ABCD равны между собой. Нарисуйте изображение пирамиды ABCD , полученное в результате ортогонального проектирования на плоскость: а) ABC ; б) перпендикулярную AB .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 128]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .