ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Противоположные рёбра треугольной пирамиды попарно равны. Докажите, что все грани этой пирамиды – равные остроугольные треугольники.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 182]      



Задача 87324

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Сфера с центром в точке O проходит через вершины K , L и M треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в точках A , B , C соответственно. Известно, что NL = 14 , KN = 16 и MN:KL = 2:3 . Проекциями точки O на плоскости KLN , LMN и KMN являются середины рёбер KL , LM и KM соответственно. Расстояние между серединами рёбер KL и MN равно . Найдите периметр треугольника ABC .
Прислать комментарий     Решение


Задача 87334

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке. Докажите, что тетраэдр ABCD ортоцентрический тогда и только тогда, когда две пары его противоположных рёбер перпендикулярны, т.е. AB CD и AD BC (в этом случае рёбра третьей пары также перпендикулярны, т.е. AC BD ).
Прислать комментарий     Решение


Задача 87336

Темы:   [ Ортоцентрический тетраэдр ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 4
Классы: 10,11

Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке.Докажите, что ортоцентрическом тетраэдре общие перпендикуляры каждой пары противоположных рёбер пересекаются в одной точке.
Прислать комментарий     Решение


Задача 87638

Темы:   [ Равногранный тетраэдр ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 10,11

Противоположные рёбра треугольной пирамиды попарно равны. Докажите, что все грани этой пирамиды – равные остроугольные треугольники.
Прислать комментарий     Решение


Задача 108842

Темы:   [ Равногранный тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 8,9

Тетраэдр называется равногранным, если все его грани – равные между собой треугольники. Докажите, что все грани равногранного тетраэдра – остроугольные треугольники.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .