ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дети держат в руках флажки. Тех, у кого в обеих руках поровну флажков, в 5 раз меньше, чем тех, у кого не поровну. Когда каждый ребёнок переложил по одному флажку из одной руки в другую, тех, у кого в обеих руках поровну флажков, стало в 2 раза меньше, чем тех, у кого не поровну. Могло ли быть так, что в начале более чем у половины детей в одной руке было ровно на один флажок меньше, чем в другой? Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 125]
Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.
Пусть = , где – несократимая дробь.
В бесконечной последовательности (xn) первый член x1 – рациональное число, большее 1, и xn+1 = xn + 1/[xn] при всех натуральных n.
Дети держат в руках флажки. Тех, у кого в обеих руках поровну флажков, в 5 раз меньше, чем тех, у кого не поровну. Когда каждый ребёнок переложил по одному флажку из одной руки в другую, тех, у кого в обеих руках поровну флажков, стало в 2 раза меньше, чем тех, у кого не поровну. Могло ли быть так, что в начале более чем у половины детей в одной руке было ровно на один флажок меньше, чем в другой?
Докажите, что произведение 99 дробей где k = 2, 3, ..., 100, больше ⅔.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 125] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|