ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Рассмотрим все возможные наборы чисел из множества  {1, 2, 3, ..., n},  не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна  (n + 1)! – 1.

   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 328]      



Задача 65385

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

У каждого целого числа от  n + 1  до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Докажите, что получится n².

Прислать комментарий     Решение

Задача 77994

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10

На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может попасть за 2n ходов.

Прислать комментарий     Решение

Задача 79246

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Итерации ]
[ Индукция (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 9,10,11

С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей  K = p1p2...pn;  затем вычисляется сумма  p1 + p2 + ... + pn + 1.  С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.

Прислать комментарий     Решение

Задача 98002

Темы:   [ Симметричная стратегия ]
[ Центральная симметрия помогает решить задачу ]
[ Индукция (прочее) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Назаров Ф.

На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)

Прислать комментарий     Решение

Задача 98036

Темы:   [ Произведения и факториалы ]
[ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Задачи с ограничениями ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

Рассмотрим все возможные наборы чисел из множества  {1, 2, 3, ..., n},  не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна  (n + 1)! – 1.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .