ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматривается произвольный многоугольник (возможно, невыпуклый). (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур). Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.
Рассматривается произвольный многоугольник (возможно, невыпуклый). (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).
Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
Трёхчлен ax² + bx + c при всех целых x является точным квадратом. Доказать, что тогда ax² + bx + c = (dx + e)².
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|