ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 418]      



Задача 98385

Темы:   [ Десятичная система счисления ]
[ Куб ]
[ Делимость чисел. Общие свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)

Прислать комментарий     Решение

Задача 98470

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 10,11

Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

Прислать комментарий     Решение

Задача 98558

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Для натуральных чисел x и y число  x² + xy + y²  в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.

Прислать комментарий     Решение

Задача 104093

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9,10

20 шахматистов сыграли турнир в один круг. Корреспондент "Спортивной газеты" написал в своей заметке, что каждый участник этого турнира выиграл столько же партий, сколько и свёл вничью. Докажите, что корреспондент ошибся.

Прислать комментарий     Решение

Задача 109551

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Даны такие натуральные числа a и b, что число  a+1/b + b+1/a  является целым.
Докажите, что наибольший общий делитель чисел a и b не превосходит числа   .

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .