ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 136]      



Задача 67138

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9,10,11

Казино предлагает игру по таким правилам. Игрок ставит любое целое число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести из казино после такой игры?
Прислать комментарий     Решение


Задача 98478

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9

Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка?

Прислать комментарий     Решение

Задача 116613

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 6,7

Победив Кащея, потребовал Иван золота, чтобы выкупить Василису у разбойников. Привёл его Кащей в пещеру и сказал: "В сундуке лежат золотые слитки. Но просто так их унести нельзя: они заколдованы. Переложи себе в суму один или несколько. Потом я переложу из сумы в сундук один или несколько, но обязательно другое число. Так мы будем по очереди перекладывать их: ты в суму, я в сундук, каждый раз новое число. Когда новое перекладывание станет невозможным, сможешь унести свою суму со слитками". Какое наибольшее число слитков может унести Иван, как бы ни действовал Кащей, если в сундуке исходно лежит  а) 13;  б) 14 золотых слитков? Как ему это сделать?

Прислать комментарий     Решение

Задача 65560

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Двое делят кусок сыра. Сначала первый режет сыр на два куска, потом второй – любой из кусков на два, и так далее, пока не получится пять кусков. Затем первый берёт себе один кусок, потом второй – один из оставшихся кусков, потом снова первый – и так, пока куски не закончатся. Для каждого игрока выяснить, какое наибольшее количество сыра он может себе гарантировать.

Прислать комментарий     Решение

Задача 109802

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 10,11

На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков – белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какую-нибудь коробочку, в которой лежит белый шарик?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .