ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 598]      



Задача 97973

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Двоичная система счисления ]
Сложность: 4
Классы: 8,9,10

Автор: Фольклор

P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.

Прислать комментарий     Решение

Задача 98458

Темы:   [ Последовательности (прочее) ]
[ Процессы и операции ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности одно натуральное число. Затем они по очереди выписывают следующие числа: Фома получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.

Прислать комментарий     Решение

Задача 110110

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 7,8,9

Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002?
Прислать комментарий     Решение


Задача 60556

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Системы счисления (прочее) ]
Сложность: 4+
Классы: 9,10,11

Пусть p – простое число и представление числа n в p-ичной системе имеет вид:   n = akpk + ak–1pk–1 + ... + a1p1 + a0.
Найдите формулу, выражающую показатель αp, с которым это число p входит в каноническое разложение n!, через n, p, и коэффициенты ak.

Прислать комментарий     Решение

Задача 64616

Темы:   [ Математическая логика (прочее) ]
[ Кооперативные алгоритмы ]
[ Двоичная система счисления ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

Одиннадцати мудрецам завязывают глаза и надевают каждому на голову колпак одного из 1000 цветов. После этого им глаза развязывают, и каждый видит все колпаки, кроме своего. Затем одновременно каждый показывает остальным одну из двух карточек – белую или чёрную. После этого все должны одновременно назвать цвет своих колпаков. Удастся ли это? Мудрецы могут заранее договориться о своих действиях (до того, как им завязали глаза); мудрецам известно, каких 1000 цветов могут быть колпаки.

Прислать комментарий     Решение

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .