ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 372]      



Задача 57026

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Диагональ AC разбивает четырехугольник ABCD на два треугольника, вписанные окружности которых касаются диагонали AC в одной точке. Докажите, что вписанные окружности треугольников ABD и BCD тоже касаются диагонали BD в одной точке, а точки их касания со сторонами четырехугольника лежат на одной окружности.
Прислать комментарий     Решение


Задача 57027

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Докажите, что проекции точки пересечения диагоналей вписанного четырехугольника на его стороны являются вершинами описанного четырехугольника, если только они не попадают на продолжения сторон.
Прислать комментарий     Решение


Задача 57028

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Докажите, что если диагонали четырехугольника перпендикулярны, то проекции точки пересечения диагоналей на стороны являются вершинами вписанного четырехугольника.
Прислать комментарий     Решение


Задача 108994

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 5
Классы: 8,9,10

На окружности даны три точки A,B,C . Построить (циркулем и линейкой) на этой окружности четвёртую точку D так, чтобы в полученный четырёхугольник можно было бы вписать окружность.
Прислать комментарий     Решение


Задача 115879

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
[ Четырехугольники (построения) ]
Сложность: 5
Классы: 8,9,10,11

Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .