ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 372]      



Задача 110755

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Биссектриса делит дугу пополам ]
[ Композиции движений. Теорема Шаля ]
[ Композиция центральных симметрий ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 7-
Классы: 9,10,11

Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Прислать комментарий     Решение


Задача 107701

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3-
Классы: 7,8,9

Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.
Прислать комментарий     Решение


Задача 115458

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Диагонали трапеции ABCD пересекаются в точке O . Описанные окружности треугольников AOB и COD пересекаются в точке М на основании AD . Докажите, что треугольник BMC равнобедренный.
Прислать комментарий     Решение


Задача 56666

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Через точку P, лежащую на общей хорде AB двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности. Докажите, что четырехугольник KLMN вписанный.
Прислать комментарий     Решение


Задача 64970

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9,10

Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что  AM = AN = AB  (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .