Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 93]
а) В треугольнике
ABC, длины сторон которого
рациональные числа, проведена высота
BB1. Докажите, что
длины отрезков
AB1 и
CB1 — рациональные числа.
б) Длины сторон и диагоналей выпуклого четырехугольника — рациональные числа. Докажите, что диагонали разрезают его на четыре
треугольника, длины сторон которых — рациональные числа.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Координаты вершин треугольника рациональны. Докажите,
что координаты центра его описанной окружности также рациональны.
Найдите все значения а, для которых выражения
а + и 1/а – принимают целые значения.
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что если p/q – несократимая рациональная дробь, являющаяся корнем полинома f(x) с целыми коэффициентами, то p – kq есть делитель числа f(k) при любом целом k.
|
|
Сложность: 3+ Классы: 8,9,10
|
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
а) Докажите, что если a1 рационально, то
последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого
места, периодическая, то a1 рационально.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 93]