Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 201]
Известно, что остаток от деления некоторого простого числа на 60 равен составному числу. Какому?
|
|
Сложность: 3+ Классы: 9,10,11
|
Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В каждую клетку квадрата 1000×1000 вписано число так, что в любом не выходящем за пределы квадрата прямоугольнике площади s со сторонами, проходящими по границам клеток, сумма чисел одна и та же. При каких s числа во всех клетках обязательно будут одинаковы?
|
|
Сложность: 3+ Классы: 9,10,11
|
Мудрецам $A, B, C, D$ сообщили, что числа 1, 2, ..., 12 написаны по одному на 12 карточках и что эти карточки будут розданы им по три, причём каждый увидит лишь свои карточки. После раздачи мудрецы по очереди сказали следующее.
$A$: "На одной из моих карточек – число 8".
$B$: "Все числа на моих карточках простые".
$C$: "А все числа на моих – составные, причём имеют общий простой делитель".
$D$: "Тогда я знаю, какие карточки у каждого из вас".
Какие карточки у $A$, если все сказали правду?
|
|
Сложность: 3+ Классы: 7,8,9
|
Найдите наименьшее натуральное число n, для которого выполнено следующее условие: если число p – простое и n делится на p – 1, то n делится на p.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 201]