ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 [Всего задач: 201]      



Задача 109818

Темы:   [ НОД и НОК. Взаимная простота ]
[ Количество и сумма делителей числа ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Простые числа и их свойства ]
Сложность: 5
Классы: 8,9,10,11

Натуральные числа x, y, z  (x > 2,  y > 1)  таковы, что  xy + 1 = z².  Обозначим через p количество различных простых делителей числа x, через q – количество различных простых делителей числа y. Докажите, что  p ≥ q + 2.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .