ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 201]      



Задача 109596

Темы:   [ Геометрическая прогрессия ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Простые числа и их свойства ]
Сложность: 4-
Классы: 9,10,11

Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?

Прислать комментарий     Решение

Задача 109933

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9

Найдите все такие пары простых чисел p и q, что  p³ – q5 = (p + q)².

Прислать комментарий     Решение

Задача 116020

Темы:   [ Уравнения в целых числах ]
[ Теория чисел. Делимость (прочее) ]
[ Простые числа и их свойства ]
Сложность: 4-
Классы: 9,10

Автор: Фольклор

Найдите все простые числа p, q и r, для которых выполняется равенство:  p + q = (p – q)r.

Прислать комментарий     Решение

Задача 35451

Темы:   [ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Простые числа и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 9,10,11

15 простых натуральных чисел образуют возрастающую арифметическую прогрессию. Докажите, что разность этой прогрессии больше 30000.

Прислать комментарий     Решение

Задача 64453

Темы:   [ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10

Число    представили в виде несократимой дроби.
Докажите, что если  3n + 1  – простое число, то числитель получившейся дроби делится на  3n + 1.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .