ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 201]      



Задача 78516

Темы:   [ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9

Найти все такие натуральные числа n, что число  (n – 1)!  не делится на n².

Прислать комментарий     Решение

Задача 98137

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Четность и нечетность ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9

Докажите, что произведение всех целых чисел от  21917 + 1  до  21991 – 1  включительно не есть квадрат целого числа.

Прислать комментарий     Решение

Задача 98383

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Существует ли такой набор из 10 натуральных чисел, что каждое не делится ни на одно из остальных, а квадрат каждого делится на каждое из остальных?

Прислать комментарий     Решение

Задача 107846

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Прислать комментарий     Решение

Задача 110093

Темы:   [ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 9,10

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .