ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 418]      



Задача 104078

Темы:   [ Степень вершины ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 5,6,7,8

В норке живёт семья из 24 мышей. Каждую ночь ровно четыре из них отправляются на склад за сыром.
Может ли так получиться, что в некоторый момент времени каждая мышка побывала на складе с каждой ровно по одному разу?

Прислать комментарий     Решение

Задача 105090

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение  НОД(m + 2000n, n + 2000m)?

Прислать комментарий     Решение

Задача 105181

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 9,10

Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.

Прислать комментарий     Решение

Задача 107712

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Какое наибольшее число неразложимых пятизначных чисел может идти подряд?

Прислать комментарий     Решение

Задача 107724

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Известно, что  х = 2а5 = 5b² > 0,  числа а и b – целые. Каково наименьшее возможное значение х?

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .