Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 418]
|
|
Сложность: 3 Классы: 7,8,9
|
Найти два шестизначных числа такие, что если их приписать друг к другу, то
полученное двенадцатизначное число делится на произведение двух исходных чисел.
Найти все такие пары чисел.
|
|
Сложность: 3 Классы: 7,8,9
|
Существуют ли три таких различных простых числа p, q, r, что p² + d делится на qr, q² + d делится на rp, r² + d делится на pq, если
а) d = 10,
б) d =11?
Незнайка решал уравнение, в левой части которого стоял многочлен третьей
степени с целыми коэффициентами, а в правой – 0. Он нашёл корень 1/7. Знайка, заглянув к нему в тетрадь, увидел только первые два слагаемых многочлена: 19x³ + 98x² и сразу сказал, что ответ неверен. Обоснуйте ответ Знайки.
|
|
Сложность: 3 Классы: 10,11
|
При каких n > 2 можно расставить целые числа от 1 до n по кругу так, чтобы сумма каждых двух соседних чисел делилась нацело на следующее за ними по часовой стрелке?
|
|
Сложность: 3 Классы: 10,11
|
Натуральные числа m и n взаимно просты (не имеют общего делителя, отличного от единицы). Дробь
можно сократить на число d.
Каково наибольшее возможное значение d?
Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 418]