Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 2440]
Существуют ли шесть таких последовательных натуральных чисел, что наименьшее
общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх
следующих?
На автобусе ездил Андрей
На кружок и обратно домой,
Заплатив 115 рублей,
Покупал он себе проездной.
В январе он его не достал,
И поэтому несколько дней
У шофёра билет покупал
Он себе за 15 рублей.
А в иной день кондуктор с него
Брал 11 только рублей.
Возвращаясь с кружка своего
Всякий раз шёл пешком наш Андрей.
За январь сколько денег ушло,
Посчитал бережливый Андрей:
С удивлением он получил
Аккурат 115 рублей!
Сосчитайте теперь поскорей,
Сколько раз был кружок в январе?
Лиса и два медвежонка делят 100 конфет. Лиса раскладывает конфеты на три кучки; кому какая достанется - определяет жребий. Лиса знает, что если медвежатам достанется разное количество конфет, то они попросят её уравнять их кучки, и тогда она заберёт излишек себе. После этого все едят доставшиеся им конфеты.
а) Придумайте, как Лисе разложить конфеты по кучкам так, чтобы съесть ровно 80 конфет (ни больше, ни меньше).
б) Может ли Лиса сделать так, чтобы в итоге съесть ровно 65 конфет?
Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005?
|
|
Сложность: 3 Классы: 7,8,9
|
Доказать, что при натуральном n число nm + 1 будет составным хотя бы для одного натурального m.
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 2440]