ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 2440]      



Задача 98063

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
Сложность: 3
Классы: 6,7,8

Автор: Фомин С.В.

Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.

Прислать комментарий     Решение

Задача 98081

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Имеется n целых чисел  (n > 1).  Известно, что каждое из них отличается от произведения всех остальных на число, кратное n.
Докажите, что сумма квадратов этих чисел делится на n.

Прислать комментарий     Решение

Задача 98091

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство:   x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.

 
Прислать комментарий     Решение

Задача 98195

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Конечно или бесконечно число натуральных решений уравнения  x² + y³ = z²?

Прислать комментарий     Решение

Задача 98250

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Композиция центральных симметрий ]
[ Метод координат на плоскости ]
Сложность: 3
Классы: 7,8,9

Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то  AB = BA1).  Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики.
Прислать комментарий     Решение


Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .