Страница:
<< 72 73 74 75
76 77 78 >> [Всего задач: 2440]
При каком n > 1 может случиться так, что в компании из n + 1 девочек и n мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
|
|
Сложность: 3 Классы: 7,8,9
|
Квадрат разрезали на 25 квадратиков, из которых ровно у одного сторона имеет длину, отличную от 1 (у каждого из остальных сторона равна 1).
Найдите площадь исходного квадрата.
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что уравнение xy(x – y) + yz(y – z) + zx(z – x) = 6 имеет бесконечно много решений в целых числах.
Пусть a, b, c – натуральные числа.
а) Докажите, что если НОК(a, a + 5) = HOK(b, b + 5), то a = b.
б) Могут ли НОК(a, b) и НОК(а + с, b + с) быть равны?
|
|
Сложность: 3 Классы: 9,10,11
|
Натуральные числа a, b, c, d таковы, что ad – bc > 1. Докажите, что хотя бы одно из чисел a, b, c, d не делится на ad – bc.
Страница:
<< 72 73 74 75
76 77 78 >> [Всего задач: 2440]