Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 2440]
Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку.
Докажите, что для любого натурального числа n > 1 найдутся такие натуральные числа a, b, c, d, что a + b = c + d = ab – cd = 4n.
|
|
Сложность: 3+ Классы: 9,10,11
|
Целые числа a, x1, x2, ...,
x13 таковы, что a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13). Докажите, что ax1x2...x13 = 0.
Будем называть натуральное число почти квадратом, если это либо точный квадрат, либо точный квадрат, умноженный на простое число.
Могут ли 8 почти квадратов идти подряд?
Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно.
Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 2440]