Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 590]
|
|
Сложность: 4- Классы: 9,10
|
На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Докажите, что SABCD ≥ 3SBCM.
Площадь треугольника ABC равна 10 см². Какое наименьшее
значение может принимать радиус описанной окружности треугольника ABC, если известно, что середины высот этого треугольника лежат на одной прямой?
|
|
Сложность: 4- Классы: 9,10,11
|
Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
a sin x + b cos x + c = 0, 2a tg x + b ctg x + 2c = 0
имеет решение.
|
|
Сложность: 4- Классы: 9,10,11
|
Квадратная доска разделена на n² прямоугольных клеток n – 1 горизонтальными и n – 1 вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.
|
|
Сложность: 4 Классы: 6,7,8
|
а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?
Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 590]