ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Белухов Н.

На плоскости дано конечное множество $S$ точек, окрашенных в красный и зеленый цвета. Назовем множество разделимым, если для него найдется такой треугольник, что все точки одного цвета лежат строго внутри, а все точки другого – строго вне треугольника. Известно, что любые 1000 точек из $S$ образуют разделимое множество. Обязательно ли все множество $S$ разделимо?

Вниз   Решение


Автор: Креков Д.

В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее число, кратное 45, десятичная запись которого состоит только из единиц и нулей.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 177]      



Задача 35270

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3-
Классы: 8,9,10

Найти наименьшее значение дроби  

Прислать комментарий     Решение

Задача 61417

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
Сложность: 3-
Классы: 10,11

  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

Прислать комментарий     Решение

Задача 77918

Темы:   [ Алгебраические неравенства (прочее) ]
[ Перебор случаев ]
[ Разложение на множители ]
Сложность: 3-
Классы: 8,9

Докажите, что многочлен  x12x9 + x4x + 1  при всех значениях x положителен.

Прислать комментарий     Решение

Задача 30889

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

a, b, c ≥ 0.  Докажите, что  2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc².

Прислать комментарий     Решение

Задача 30892

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 6,7

Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .