Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 117]
|
|
Сложность: 3+ Классы: 9,10
|
Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений (x – a)(x – b) = x – c, (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b имеют решение.
Для квадратного трёхчлена f(x) и некоторых действительных чисел l, t и v выполнены равенства: f(l) = t + v, f(t) = l + v, f(v) = l + t.
Докажите, что среди чисел l, t и v есть равные.
|
|
Сложность: 3+ Классы: 10,11
|
Квадратный трёхчлен f(x) имеет два различных корня. Оказалось, что для любых чисел a и b верно неравенство f(a² + b²) ≥ f(2ab).
Докажите, что хотя бы один из корней этого трёхчлена – отрицательный.
|
|
Сложность: 3+ Классы: 9,10,11
|
Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.
|
|
Сложность: 3+ Классы: 9,10,11
|
Даны три квадратных трёхчлена: x² + b1x + c1, x² +
b2x + c2 и x² + ½ (b1 + b2)x + ½ (c1 + c2). Известно, что их сумма имеет корни (возможно, два совпадающих). Докажите, что хотя бы у двух из этих трёхчленов также есть корни (возможно, два совпадающих).
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 117]