ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральное число называется совершенным, если оно равно сумме все своих собственных делителей, включая 1. Напечатать все совершенные числа, меньшие, чем заданное число М.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 502]      



Задача 61421

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3-
Классы: 8,9,10,11

Нарисуйте все лестницы из четырёх кирпичей в порядке убывания, начиная с самой крутой  (4, 0, 0, 0)  и заканчивая самой пологой  (1, 1, 1, 1).

Прислать комментарий     Решение

Задача 61422

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3-
Классы: 8,9,10,11

а) Диаграммы Юнга  (4, 1, 1)  и  (3, 3, 0)  не сравнимы, – ни одна из них не мажорирует другую. Есть ли еще такие несравнимые наборы с суммой 6?

б) Найдите все несравнимые пары наборов для  s = 7.

Про диаграммы Юнга смотри здесь.

Прислать комментарий     Решение

Задача 61473

 [Лягушка-путешественница]
Темы:   [ Классическая комбинаторика (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 3-
Классы: 9,10,11

Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?

Прислать комментарий     Решение

Задача 102883

Темы:   [ Правило произведения ]
[ Поворот помогает решить задачу ]
[ Шахматная раскраска ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3-
Классы: 7,8

На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу.
Доказать, что число всех таких расстановок есть точный квадрат.

Прислать комментарий     Решение

Задача 103966

Темы:   [ Раскладки и разбиения ]
[ Теория алгоритмов (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3-
Классы: 7,8,9


В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 502]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .